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Rapidly rotating convection in spherical geometry outside the tangent cylinder
is investigated using the quasi-geostrophic approximation. The validity of the
approximation is discussed, and numerical simulations using these equations are
performed, reaching Ekman numbers, E, down to 10−6. The results are compared
with experiments and fully three-dimensional numerical simulations. We find that
the inertial scaling developed to study rapidly rotating convection does not represent
the Prandtl-number dependence of our results adequately. Instead, we find that
even in strongly supercritical situations the dominant wavenumbers at the onset of
convection still have a strong influence on the behaviour. We find that the local Péclet
number, the product of the typical convective velocity and local convective length
scale divided by the thermal diffusivity, is helpful for understanding the dynamics of
rapidly rotating convection. We explore the zonal flows driven by Reynolds stresses
with no-slip boundaries and explore their Prandtl-number dependence. We also study
the convective heat transport at low E, and consider the boundary layer structures
that can form at large Rayleigh number, slowing down the rate of growth of the
Nusselt number with Rayleigh number.

1. Introduction
The onset of convection in rapidly rotating spherical systems is now fairly well-

understood (Roberts 1968; Busse 1970; Jones, Soward & Mussa 2000; Dormy et al.
2004). As expected from the Taylor–Proudman constraint for slow steady motions
in rotating fluids, columnar structures are generally preferred. An exception is the
case of very low-Prandtl-number convection (Zhang 1995) where very fast inertial
modes, oscillating on the rotation frequency time scale, may dominate over columnar
convection which oscillates on a time scale a factor O(E−1/3) longer. This very low-
Prandtl-number regime has received much attention recently (Ardes, Busse & Wicht
1997; Herrmann & Busse 1997; Plaut & Busse 2002; Busse & Simitev 2004). Here we
consider only the columnar regime, which appears to dominate in the experiments of
Aubert et al. (2001) even at the Prandtl number of liquid gallium, P = 0.025.

Many laboratory experiments on rapidly rotating spherical systems have been
performed, using a variety of working fluids. These all have sufficiently high rotation
rates for the centrifugal acceleration to dominate over gravity. Pioneering work was
done by Busse & Carrigan (1976), Carrigan & Busse (1983), Azouni, Bolton &
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Busse (1986), Hart, Glatzmaier & Toomre (1986), Cardin & Olson (1992, 1994) and
Manneville & Olson (1996), in which the columnar form of convection was established
and the formation of zonal flows investigated. Cordero & Busse (1992) and Cordero
(1993) investigated experimentally the behaviour near critical. More recently, Aubert
et al. (2001) used a configuration in which a spherical container with a cylindrical
‘inner core’ is rapidly rotated. The inner cylinder is cooled relative to the outer sphere,
leading to thermal convection in the fluid. Both the water (P = 7) and gallium cases
have been investigated. A different configuration has been used by Sumita & Olson
(2000, 2003) in which a hemispherical inner core is enclosed by a hemispherical outer
boundary, with a rigid flat lid at the equator. Thermal convection is induced by
cooling the inner hemisphere relative to the outer sphere. A third configuration, in
which a spherical inner core is held in place inside a spherical outer sphere by means
a rigid rods through which the coolant is pumped, is currently being investigated by
Shew (Shew, Sisan & Lathrop 2002; Shew 2004). All these experiments have Ekman
number E = ν/Ωd2, ν being the kinematic viscosity, Ω the rotation rate and d the
gap width between the spherical shells, in the range 10−5–10−7. The radius ratio of the
outer sphere (or hemisphere) to the inner sphere (or cylinder) is typically between 0.3
and 0.4. A wide range of Rayleigh numbers is attainable, up to 600 times critical in
the case of the Sumita & Olson (2003) experiment, though none of these experiments
are suitable for the study of convection near onset.

An analysis of the experimental results led Aubert et al. (2001) and Aubert, Gillet &
Cardin (2003) to propose that rapidly rotating columnar convection is frequently in
an inertial regime, in which there is a balance between Coriolis force, buoyancy
force and inertial acceleration in the momentum equation. They also supposed that
there is a high correlation between the radial convective velocity and the temperature
fluctuations (hot fluid normally rises, cold fluid normally sinks) so that the convective
heat flux can be estimated as a product of the radial velocity and the temperature
perturbation. This leads to a scaling for the typical thickness � of the convection
columns � ∼ RQ

1/5, where RQ is the flux Rayleigh number (Cardin & Olson 1994;
Aubert et al. 2001), as described in § 3 below. The 1/5 scaling law was also suggested
by Ingersoll & Pollard (1982) in a discussion of convection in Jupiter’s atmosphere.
The flux Rayleigh number is essentially a product of the traditional Rayleigh number
and Nu − 1, where Nu is the Nusselt number. The inertial scaling of Aubert et al.
is therefore not a complete prescription of the typical values achieved by nonlinear
convection, but has to be supplemented by a Nusselt number–Rayleigh number
relation; Aubert et al. used an experimentally derived power-law approximation. This
is discussed further below.

Numerical simulations of fully three-dimensional convection in a sphere were
pioneered by Gilman (1977, 1978), with more recent calculations from Tilgner & Busse
(1997), Christensen (2001, 2002) and Aurnou & Heimpel (2004). These simulations
give much useful information on the heat transport and particularly the zonal
flow, but they are limited to Ekman numbers in the range 10−3–10−5, because
of computational expense. This is larger than the experimental values, and much
larger than the typical values in planetary cores or giant-planet atmospheres. Here
we report the results of quasi-geostrophic two-dimensional calculations, which can
reach significantly lower Ekman numbers. The quasi-geostrophic approximation for
spherical convection, QGA, was developed from the Busse (1970) annulus model
by Busse (1986), Busse & Or (1986), Cardin & Olson (1994), and is described in
Aubert et al. (2003). Yano (1992) showed that this approximation incorporates phase
mixing, and Jones et al. (2000) showed that the quasi-geostrophic approximation gives
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qualitatively reasonable results for the linear theory (see also Cole 2004). Brummell &
Hart (1993) and Jones, Rotvig & Abdulrahman (2003) used the annulus model to
investigate zonal flows in very rapidly rotating systems.

The aim of this paper is to investigate the different regimes of rapidly rotating
convection within the QGA framework. In § 2 we discuss the strengths and weaknesses
of the QGA, examining the actual z-dependence of the flow at onset using the Roberts–
Busse equation of linear theory. We then focus on weakly nonlinear results in § 3, and
investigate how far this can be extended into the strongly nonlinear regime. In § 4 we
compare our results with the inertial scaling laws, and also with a viscous scaling.
We propose an extension of the scalings derived from the temperature equation to
close the system, and investigate the nature of the boundary layers that occur at large
Rayleigh number.

2. The quasi-geostrophic approximation
We use cylindrical polar coordinates (s, φ, z) to describe our Boussinesq convection.

The case we consider in some detail is where there is differential heating, the inner
core being maintained at a higher temperature than the outer sphere, but with no
internal heating. The experiments closely resemble the differential heating case, but
for comparison we sometimes refer to the internally heated case (see e.g. Dormy et al.
2004). The static temperature gradient for differential heating is

Ts(r) =
riro(Ti − To)

ro − ri

r−1 +
roTo − riTi

ro − ri

(2.1)

where r =
√

s2 + z2, ri is the inner core radius and ro is the outer core radius, and
Ti and To are the temperatures on the inner and outer boundaries. The temperature
anomaly θ is defined by

T = Ts + θ. (2.2)

The radius ratio of the containing boundaries is η = ri/ro, the gravity field is −gr
and the angular velocity of rotation is Ω ẑ.

The unit of length is the gap width d = ro − ri , the unit of time is d2/κ , the thermal
time, and the unit of temperature is �T = Ti − To. From now on all quantities are
taken to be in the dimensionless units, so ro = 1/(1 − η) and ri = η/(1 − η). The
momentum equation is then

1

P

(
∂u
∂t

+ u · ∇u
)

+ 2E−1 ẑ × u = −∇p + Rθ r + ∇2u, (2.3)

and the temperature and continuity equations are

∂θ

∂t
+ (u · ∇)θ = Q(r)u · r + ∇2θ (2.4)

where Q = η/((1 − η)2r3) (Dormy et al. 2004). Incompressibility gives

∇ · u = 0. (2.5)

The dimensionless parameters are the Ekman number E, the Rayleigh number R and
the Prandtl number P defined by

E =
ν

Ωd2
, R =

gα�T d4

κν
, P =

ν

κ
. (2.6)
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Using cylindrical coordinates, ẑ · ∇×(2.3) gives

1

P

[
∂ζ

∂t
+ u · ∇ζ − ω · ∇uz

]
− ∇2ζ − 2E−1 ∂uz

∂z
= −R

∂θ

∂φ
, (2.7)

where uz is the z-component of the velocity, ω = ∇ × u and ζ is the z-component of
the vorticity. Then ẑ · ∇ × (∇ × (2.3)) gives

2
∂ζ

∂z
=E∇4uz − E

P

[
∂

∂t
∇2uz + ẑ · ∇ × ∇ × (u ×ω)

]
+ER

[
z∇2

Hθ − 1

s

∂

∂s

(
s2 ∂θ

∂z

)]
, (2.8)

where

∇2
H ≡ 1

s

∂

∂s

(
s

∂

∂s

)
+

1

s2

∂2

∂φ2
. (2.9)

The temperature equation is(
∂

∂t
− ∇2

)
θ = Q(sus + zuz) − ∇ · (uθ). (2.10)

The boundary conditions are that the velocity is zero at the inner and outer boundaries
and that the temperature anomaly θ vanishes there also.

The quasi-geostrophic approximation (QGA) (Aubert et al. 2003; Busse & Or
1986; Yano 1992) reduces this three-dimensional system to a two-dimensional system.
The idea is to take advantage of the relatively weak z-dependence induced by the
rapid rotation. The same philosophy has been used successfully in annulus models of
rapidly rotating convection (Busse 1970). Since there is some z-dependence even in
the linear problem, the QGA cannot be rigorously justified in a sphere in any limit,
though it can be justified in cases where the slope of the boundary is small, as in the
annulus model (not of course true for a sphere). The QGA is therefore only a model
of convection in a rapidly rotating sphere. However, in cases where comparison is
possible the QGA has been shown to give qualitatively correct behaviour, and it
incorporates key features such as phase mixing (Yano 1992; Cole 2004; Morin &
Dormy 2004).

In equation (2.8), the QGA ignores all terms on the right-hand side to give

∂ζ

∂z
= 0. (2.11)

This is the essence of the QGA in rotating convection, and it is a huge simplification
because the vorticity equation is reduced from three to two dimensions. Because it
cannot be rigorously justified in any asymptotic limit, it is essentially a numerical
approximation.

In the linear theory of convection at small E (Busse 1970; Jones et al. 2000),
convection occurs in tall thin columns, so the horizontal derivatives are much larger,
by O(E−1/3), than the vertical derivatives. In consequence, even though E is small,
only the nonlinear term and the term involving the z-derivative of θ are ignored in
(2.8) in the E → 0 linear theory of Jones et al. (2000).

In figure 1(a) we plot the z-vorticity ζ obtained from the asymptotic small-E linear
theory of Jones et al. (2000) and Dormy et al. (2004) as the z-coordinate varies
along the column from z = −H to z = H . At a particular s and t , the vorticity is
the real part of ζ exp(imφ), m being the azimuthal wavenumber that minimizes the
critical Rayleigh number. The z-dependence is obtained by solving the Roberts–Busse
equation (equation (3.5) of Jones et al. (2000) and equation (3.11) of Dormy et al.
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Figure 1. z-profiles using linear theory with P = 1, η = 0.35: (a) real and imaginary parts of
the vorticity; (b) real and imaginary parts of the z-component of velocity.

(2004)) and is shown in two cases, both at Prandtl number P = 1, η = 0.35. The first
case shows the real part and imaginary part of ζ (z) = ζr +iζi in the case of differential
heating with an inner core of radius ratio η = 0.35. In this case the critical column is
located close to s = ri . The second case is for uniform internal heating (for details see
Dormy et al. 2004) where convection first onsets at s = 0.59/(1 − η). In figure 1(b),
following Aubert (2001), the real and imaginary parts of uz = wr + iwi are shown
for the same two cases. The normalization is such that uz is real near z = ±H , and
note that ζ is mainly imaginary, so that the vertical vorticity and vertical velocity
are not generally in phase. Although ζ (z) is not exactly constant, the variation in
z is comparatively small in both cases. The real part is also small, indicating that
the column is indeed roughly parallel to the z-axis. The QGA is based on it being
reasonable to ignore this small variation in ζ in the z-direction. In figure 1(a), we
have only considered cases where the convection occurs outside the tangent cylinder.
From now on we focus on convection outside the tangent cylinder, in the region
ri � s � ro, as convection inside the tangent cylinder has a somewhat different
character. Note that in the Grenoble rotating convection experiment there is only
flow outside the tangent cylinder. The term ERz∇2

Hθ comes from the z-component
of gravity, and although it is present at leading order for small E in the spherical
linear theory, its neglect can be justified in experiments where gravity is replaced by
centrifugal acceleration. However, the remaining terms will ensure that there is some
small z-variation of ζ even in the case where the effective gravity is in the s-direction.

The arguments for the QGA above all rest on analysis of the linear modes. In
nonlinear convection we expect that modes with horizontal wavelengths of order of
the gap size will be excited by nonlinear interactions. However, as pointed out by
Zhang & Liao (2004), any mode of this type with significant z-dependent vorticity
has high frequency, O(E−1), as the dominant term on the right-hand side of (2.8)
is then the second term. Such modes are unlikely to interact much with the lower
frequency O(E−2/3) modes driven by the convection. Further justification for the
QGA is provided by the experimental results. Carrigan & Busse (1983), Cardin &
Olson (1994) and Aubert et al. (2001) all found a vertical structure that was only
weakly z-dependent using visualization techniques. In summary, there will be some
variation in ζ along the z-direction, but the simplification to two-dimensionality is
so great that we ignore z-variations of vorticity in most of the discussion below. The
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Ekman boundary layers, where there is strong z-variation of vertical vorticity, are
treated by asymptotic methods.

Next we examine the relation between ζ and u. In the QGA we need to assume
that us and uφ are both independent of z. When we take the z-average of (2.7),
the nonlinear advection terms involve the z-averages of us and uφ because ζ is
assumed z-independent. The z-average of the term 2E−1∂uz/∂z involves uz at the
outer boundary, and through the vanishing of the radial velocity there

uz|±H = ∓sus

H
, where H (s) =

√
r2
o − s2. (2.12)

It follows that the value of us at the outer boundary enters the z-averaged equation
(2.7) and if us varies along z this will in general be different from the z-averaged us .
For tall thin columnar modes, there is no difficulty, because from (2.12) uz is of the
same order of magnitude as us , and if the horizontal length scales are much smaller
than the vertical length scale

∂uz

∂z
� ∂us

∂s
∼ 1

s

∂uφ

∂φ
. (2.13)

It then follows from ∇ · u = 0 that there is a streamfunction ψ with

uφ = −∂ψ

∂s
, us =

1

s

∂ψ

∂φ
, ∇2

Hψ = −ζ, (2.14)

so the z-independence of us and uφ is guaranteed. For the nonlinearly excited modes
with O(1) horizontal wavelengths, we can again appeal to (2.7), which indicates that
modes with significant z-variation in uz and O(1) horizontal length scales will have
high frequencies with ∂/∂t ∼ O(E−1), and so will not couple effectively with the
columnar convection modes.

Schaeffer & Cardin (2005) give an alternative way of justifying the z-independence
of us and uφ . They do not assume ∂uz/∂z is negligible, but instead assume uz is
a linear function of z. Figure 1(b) provides some justification for this assumption.
Although ∂uz/∂z decreases somewhat near the outer boundary, uz is approximately
linear over a large part of the columnar cells. With this linear assumption, (2.12)
implies

uz = −szus

H 2
, so

1

s

∂

∂s
(sus) +

1

s

∂uφ

∂φ
− sus

H 2
= 0, (2.15)

leading to

us =
1

s

∂ψ

∂φ
, uφ = −∂ψ

∂s
+

sψ

H 2
, ζ = −∇2

Hψ +
1

s

∂

∂s

(
s2ψ

H 2

)
. (2.16)

Again we can deduce that uφ and us are both individually independent of z. For
short horizontal length scales, (2.16) and (2.14) are the same because the extra terms
are negligible. In our numerical work we used (2.14), though some runs using (2.16)
were done. For our convection problem no significant differences were found using
the Cardin & Schaeffer formulation except that the Nusselt number becomes weakly
s-dependent, and from now on we adopt the simpler (2.14) rather than (2.16).

We now turn to the nonlinear terms in (2.7). The term ω · ∇uz is negligible provided
the Rossby number Ro = |u|/Ωd , is small everywhere, i.e. the convective vorticity is
small compared to the planetary vorticity (or in experiments the rotation rate of the
apparatus). This is certainly true in the experiments, and in many of the planetary
applications, so this term is ignored in the QGA. We now take the z-average of (2.7)
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by integrating from z = ±H , where H =
√

r2
o − s2. Following the discussion above,

we replace the averaged advection term by the scalar product of the averaged uH and
∇ζ . If no-slip boundaries are present (as in all experiments) the z-derivatives of the
viscous term are negligible everywhere except in the viscous boundary layer, where
they give rise to an ‘Ekman pumping’ term. We use the usual Ekman layer theory, see
Greenspan (1968) and Gubbins & Roberts (1987) (but note there is a sign error in
their formula). We take the z-integration of (2.7) to just outside the boundary layer,
where there is an ‘Ekman pumping’ normal component of velocity of order E1/2,

1

P

[
∂ζ

∂t
+ u · ∇ζ

]
+

2sus

E
(
r2
o − s2

) =
2ro

E
(
r2
o − s2

)u · n̂|z=H + ∇2
Hζ − R

∂θ

∂φ
, (2.17)

where the Ekman pumping is given by

u · n̂|z=H = −1

2
E1/2n̂ · ∇ ×

[
1

(n̂ · ẑ)1/2
(n̂ × u + u)

]

= −1

2
E1/2

(
H

ro

)1/2 [
ζ +

suφ

2H 2
− s

H 2

∂us

∂φ
+

5ro

2H 3
sus

]
. (2.18)

Note that in deriving (2.18) we have assumed uz is linear in z. The effect of the Ekman
pumping term has been investigated recently in the annulus model by Jones et al.
(2003). It is interesting to compare the relative importance of the first two terms on
the right-hand side of (2.17). Columnar convection near onset has horizontal length
scale E−1/3 and so the internal viscous friction dominates over the Ekman pumping
(Zhang & Jones 1993). For the large-scale modes such as the zonal flow this not
necessarily the case, and Ekman pumping may dominate the bulk dissipation.

It is convenient to write the axisymmetric φ component of (2.3) in terms of the
mean azimuthal velocity, the zonal flow, and this also ensures that there is no mean
azimuthal pressure gradient (Plaut & Busse 2002). Denoting the average over φ by
an overbar, (

1

P

∂

∂t
− ∇2

H +
E−1/2r1/2

o

H 3/2

)
ūφ = − 1

P
u · ∇uφ. (2.19)

The Coriolis term is zero if us is z-independent, because then there can be no zonal
average of us . If, however, there is z-dependence of us arising from the θ terms in
(2.8), this is no longer the case and a thermal wind ensues. In the QGA we assume
ζ , and hence us , is z-independent and so we must ignore any thermal wind. In the
Grenoble experiment, the thermal wind is known to be small. The zonal flow is then
entirely driven by the Reynolds stress term on the right of (2.19) which only involves
the non-axisymmetric fluctating parts of the convection. It is damped both by the
Ekman pumping at the boundary and the bulk dissipation in the interior.

The temperature equation in the QGA is found by taking the z-average of (2.4)
and defining

〈θ〉z =
1

2H

∫ H

−H

θ dz and 〈Ts〉z =
1

2H

∫ H

−H

Ts dz. (2.20)

We obtain, assuming ∇2Ts = 0,(
∂

∂t
− ∇2

H

)
〈θ〉z + us

∂〈Ts〉z

∂s
+ uH · ∇〈θ〉z = − 1

2H

∫ H

−H

uz

∂

∂z
(θ + Ts) +

∂2θ

∂z2
dz. (2.21)
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The QGA temperature equation (Aubert et al. 2003) is obtained by omitting the
terms on the right-hand side of (2.21). This is plausible, since the z-derivatives of θ

will generally be smaller than the s- and φ-derivatives outside of thermal boundary
layers, because of the columnar structure. However, it is not easy to justify rigorously,
because uz is of the same order as us , so the omitted term uz∂Ts/∂z is of the same order
as the retained term us∂〈Ts〉z/∂s. Some insight into the nature of this approximation
can be gained by considering the heat flux.

From the time-averaged (2.4) (i.e. omitting the ∂/∂t term), and integrating over
ri � s ′ � s, −H � z � H , 0 � φ � 2π gives∫ 2π

0

∫ H

−H

(
us − ∂

∂s

)
(Ts + θ) s dz dφ −

∫
Sz

(n̂ · ∇)(Ts + θ) dS

=

∫ 2π

0

∫ Hi

−Hi

− ∂

∂s
(Ts + θ)|s=ri

ri dz dφ = Ft (2.22)

where Ft is the time-averaged heat flux passing through the tangent cylinder s = ri ,
and Sz is the surface area of the ‘endcaps’ region of the outer sphere lying between
s = ri and s. The first term is the convected and conducted heat flux through a
cylinder of radius s, and the second term is the conducted heat flux through the
endcap regions. If the QGA temperature equation(

∂

∂t
− ∇2

H

)
〈θ〉z + us

∂〈Ts〉z

∂s
+ uH · ∇〈θ〉z = 0 (2.23)

held exactly, then integrating the time-averaged (2.23) over the surface ri � s ′ � s,
0 � φ � 2π gives∫ 2π

0

(
us − ∂

∂s

)
(〈Ts〉z + 〈θ〉z) s dφ =

∫ 2π

0

− ∂

∂s
(〈Ts〉z + 〈θ〉z)|s=ri

ri dφ =
Ft

2Hi

(2.24)

using (2.20) and (2.22). Now the exact convected and conducted flux through the
cylinder of radius s is∫ 2π

0

∫ H

−H

(
us − ∂

∂s

)
(Ts + θ) s dzdφ = 2H

∫ 2π

0

(
us − ∂

∂s

)
(〈Ts〉z + 〈θ〉z) s dφ =

HFt

Hi

(2.25)

using (2.20), (2.22), and (2.24). We see that in the QGA the actual heat flux at all
Rayleigh numbers passing through the cylinder at radius s of height H is just HFt/Hi ,
and so the heat passing through the endcap regions is (Hi − H )Ft/Hi . The QGA thus
gives a specific latitudinal distribution of heat flux through the outer sphere outside
the tangent cylinder. Without a fully three-dimensional calculation or an experiment
we cannot tell if this agrees with the actual latitudinal heat flux distribution, but the
QGA distribution is at least plausible.

The value of 〈Ts〉z is the z-average of (2.1). Aubert et al. (2003) noted that for
η = 4/11 = 0.364, the value used in all our subsequent numerical calculations, the
form of the z-average of (2.1) is very close to the solution of ∇2

H 〈Ts〉z = 0 multiplied
by a factor γ = 0.453, so we take (dropping the 〈〉z from now on)

Ts = To + γ
ln ro − ln s

ln ro − ln ri

so Q = −1

s

dTs

ds
=

γ

s2 ln(1/η)
, (2.26)
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and the temperature equation becomes

∂θ

∂t
+ uH · ∇θ = Q

∂ψ

∂φ
+ ∇2

Hθ. (2.27)

Note that if the effective gravity comes from centrifugal force as in the experiments,
we need to reverse the sign of the temperature throughout, so in (2.17) the temperature
term becomes +R∂θ/∂φ and in (2.27) the Q term becomes −Q(s)∂ψ/∂φ. The nature
of the solution is unaffected by this transformation.

The boundary conditions adopted are that the velocity and the temperature anomaly
vanish at the tangent cylinder s = ri and also at s = ro, so

ψ =
∂ψ

∂s
= θ = 0 at s = ri, s = ro. (2.28)

This boundary condition at the tangent cylinder is clearly appropriate for the
Grenoble experiment configuration. The definition of the Nusselt number is quite
straightforward within the QGA. The heat flux at the inner core cylinder is entirely
by conduction, so

Nu =
dT̄

ds

(
dTs

ds

)−1

evaluated at s = ri, (2.29)

where T̄ is the azimuthal average of the temperature, gives the ratio of the total heat
flux to the conducted heat flux in the basic state. It follows that

Nu − 1 = −∂θ̄

∂s

ri ln(1/η)

γ
evaluated at s = ri . (2.30)

When the inner core is a sphere, the situation is more complex. The issue of what
fraction of the heat flux crosses the tangent cylinder rather than emerging from the
endcaps inside the tangent cylinder lies outside the QGA framework.

We solve (2.14), (2.17) and (2.27) with boundary conditions (2.28) using a numerical
scheme based on a truncated Fourier expansion in the φ-direction and finite differences
in the s-direction, described in Aubert et al. (2003). The only important difference is
that in this work the Ekman pumping term is included for both the non-axisymmetric
and the axisymmetric components of the flow, while in Aubert et al. (2003) it was only
applied to the axisymmetric components. The Crank–Nicolson scheme is used for all
linear terms except the buoyancy term, with an explicit Adams–Bashforth scheme for
the remaining terms. As the problem is only two-dimensional, a large number of grid
points (typically 400) and many modes (m up to 200) can be used, even if a large
coverage of parameter space is required.

3. Convection close to critical
We are considering only the convection occurring outside the tangent cylinder.

We distinguish three broad regimes of convection. In order of increasing Rayleigh
number these are the weakly nonlinear regime, the whole-sphere regime and the
boundary-layer regime. At the onset of convection,

ψ = Ψ (s) exp(i(mφ − ω0t)) (3.1)

and in figure 2 we show the vorticity ζ at the onset of convection in the two cases
P = 7.0 (water), E = 6.5 × 10−6 and P = 0.025 (gallium), E = 1.95 × 10−6. In the
full spherical geometry convection onsets first near the tangent cylinder (Dormy et al.
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Figure 2. Snapshot of the vorticity in the equatorial plane at the onset of convection, viewed
from above. (a) P = 7.0, E = 6.5 × 10−6, Rc = 1.92 × 107, mc = 22, ωc = 1932; (b) P = 0.025,
E = 1.95 × 10−6, Rc = 6.8 × 106, mc = 14, ωc = 318.

2004), and the QGA has the same behaviour. At low Prandtl numbers, very low E

is required before this localization becomes apparent (Jones et al. 2000), so that in
practice the whole-sphere regime is entered immediately at low P . The onset value of
m scales with E−1/3 and the onset frequency with O(E−2/3). All the main qualitative
features of the linear theory with full spherical geometry are reproduced by the QGA
(Aubert et al. 2003).

Close to critical, in the weakly nonlinear regime, the form of the convection is
essentially given by the form of the linear disturbance. This regime is amenable to
theoretical analysis. As the Rayleigh number is increased, the convection starts to
occur over most of the sphere. This is the whole-sphere convection regime, achieved
typically at Rayleigh numbers a few times critical. As the Rayleigh number is increased
further, the rate of growth of Nusselt number as a function of Rayleigh number begins
to slow down. We attribute this to the development of thermal boundary layers, so
in this regime the heat transport is controlled by these boundary layers.

3.1. The weakly nonlinear convection regime

Near onset, for moderate or large P , in the case of differential heating, the convection
is confined to a region of thickness O(E2/9) in the s-direction (Dormy et al. 2004).
Alternatively, the critical cylinder may be located outside the tangent cylinder, as in
the whole-sphere internally heated case, in which case the convecting region is of
width O(E1/6) in the s-direction. Note that in both cases the width of the convecting
region L is larger than the typical azimuthal length scale � of the convection columns,
which is O(E1/3). The convection columns have a spiralling form (see figure 2(b) and
Zhang 1992), and the convecting region is the envelope of these spiral columns, which
may contain many different individual columns.

The behaviour near critical in the internally heated case can give rise to further
complications, because the global critical Rayleigh number is larger than the local
critical Rayleigh number (Jones et al. 2000), so there is a possibility of subcritical
instability (Soward 1977). Investigations by Morin & Dormy (2004) and Cole (2004)
suggested that the first bifurcation remains supercritical down to E = 10−7, but the
behaviour at very low E has yet to be fully resolved. Since this distinction between
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the local and global critical Rayleigh number is lost in the differentially heated case
we do not expect the complication of subcriticality in this case.

Near onset, the dynamics is dominated by the preferred single azimuthal
wavenumber and the axisymmetric zonal flow, and their corresponding temperature
perturbations. At larger Rayleigh numbers, nonlinear interactions ensure that the
single azimuthal wavenumber broadens into a band of wavenumbers, and the
axisymmetric mode is joined by a band of low-wavenumber modes. Both laboratory
and numerical experiments suggest that these bands of activity do not fully merge
until the Rayleigh is quite large. It is therefore helpful to write down the equations
governing the interaction of a single mode with wavenumber exp(imφ) with the
axisymmetric mean flow. Let

ψ = ψ̂(s, t) exp(imφ) + c.c. + ψ̄(s, t), θ = θ̂ (s, t) exp(imφ) + c.c. + θ̄ (s, t). (3.2)

The equations for the fluctuating parts neglecting the Ekman pumping are then, from
(2.14), (2.17) and (2.27),

ζ̂ + ∇2
H ψ̂ = 0, ∇2

H =

(
1

s

∂

∂s

(
s

∂

∂s

)
− m2

s2

)
, (3.3)

∇2
H ζ̂ − 2im

E
(
r2
o − s2

) ψ̂ − imRθ̂ =
1

P

∂ζ̂

∂t
+

im

Ps

[
∂

∂s

(
1

s

∂

∂s
(sūφ)

)
ψ̂ + ūφζ̂

]
, (3.4)

(
∂

∂t
− ∇2

H

)
θ̂ − im

(
Q − 1

s

∂θ̄

∂s

)
ψ̂ = − im

s
ūφθ̂ , (3.5)

and for the mean parts, ūφ being the φ-average of the zonal wind uφ and θ̄ being the
φ-average of the temperature anomaly, and complex conjugate is denoted by ∗,[

∂

∂t
− 1

s

∂

∂s

(
s

∂

∂s

)]
θ̄ +

im

s

∂

∂s
(ψ̂ θ̂∗ − ψ̂∗θ̂ ) = 0, (3.6)

1

P

∂ūφ

∂t
− ∂

∂s

(
1

s

∂

∂s
(sūφ)

)
=

im

P

1

s2

∂

∂s

[
s

(
ψ̂

∂ψ̂∗

∂s
− ψ̂∗ ∂ψ̂

∂s

)]
− E−1/2

H

√
ro

H
ūφ. (3.7)

These equations have been integrated numerically (Cole 2004; Morin & Dormy
2004) but here we seek solutions in which the fluctuating parts have the form of
travelling waves,

ψ = ψ̂(s) exp(i(mφ − ωt)) + c.c., θ = θ̂ (s) exp(i(mφ − ωt)) + c.c. (3.8)

where the t dependence has been taken out of ψ̂ and θ̂ , and the frequency ω is in
general different from the linear frequency ω0, and the mean (barred) quantities are
steady. Then integrating equation (3.6) we obtain

dθ̄

ds
=

im

s
(ψ̂ θ̂∗ − ψ̂∗θ̂ ) − (Nu − 1)Qs, (3.9)

and integrating again and using (2.26)

(Nu − 1)γ =

∫ ro

ri

im

s
(ψ̂ θ̂∗ − ψ̂∗θ̂ ) ds. (3.10)

We now take the limit P → ∞. This greatly simplifies the analysis, though the
method below can be used for all P . In this limit ūφ → 0 and so all terms on the right-
hand side of equations (3.4)–(3.5) disappear, and (3.7) becomes redundant. The adjoint
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linear problem has solutions of the form

ψ = ψ̂a(s) exp(−i(mφ − ω0t)), θ = θ̂a(s) exp(−i(mφ − ω0t)), (3.11)

with

ζ̂a + ∇2
H ψ̂a = 0, ∇2

H ζ̂a − 2im

E
(
r2
o − s2

) ψ̂a − imQθ̂a = 0, (3.12a, b)

iω0θ̂a + ∇2
H θ̂a + imRcψ̂a = 0, ψ̂a =

∂ψ̂a

∂s
= θ̂a = 0 on s = ri, ro. (3.12c, d)

We now multiply (3.3) by ζ̂a , (3.4) by ψ̂a , (3.5) by θ̂a , add the parts together, and
integrate from s = ri to s = ro. Integration by parts, together with the boundary
conditions (2.28) and (3.12d), gives∫ ro

ri

{
− im(R − Rc) θ̂ ψ̂a + i(ω0 − ω) θ̂ θ̂a +

im

s

dθ̄

ds
ψ̂ θ̂a

}
s ds = 0. (3.13)

A useful result, easily obtained by multiplying (3.4) by ψ̂a , multiplying (3.12b) by ψ̂

and subtracting and integrating, is∫ ro

ri

Rθ̂ψ̂a sds =

∫ ro

ri

Qψ̂θ̂a sds. (3.14)

Using (3.9), (3.10) and (3.14), (3.13) becomes∫ ro

ri

{
ψ̂ θ̂a

[
mQ

R − Rc

R
− im2

s2

(
(ψ̂ θ̂∗ − ψ̂∗θ̂ ) −

∫ ro

ri

(ψ̂ θ̂∗ − ψ̂∗θ̂)
ds

s ln(1/η)

)]

+ (ω − ω0) θ̂ θ̂a

}
sds = 0. (3.15)

If the linear solution of (3.3)–(3.5) is inserted into this expression, the real and
imaginary parts give ω − ω0 and the amplitude of the linear solution in terms of
(R − Rc)/R. Together with (3.10) we get an expression for the Nusselt number and
frequency change in terms of the Rayleigh number,

Nu − 1 = K1

R − Rc

R
, ω − ω0 = K2ω0

R − Rc

R
. (3.16)

For E = 2.44 × 10−6, η = 4/11, P = ∞, and no Ekman pumping, the linear critical
value of Rc = 8.12 × 107, ω0 = 4822 and the critical value of m = 34. Both the linear
problem and the adjoint problem were solved numerically, and values of K1 = 0.17
and K2 = 0.25 were found. In figure 3 we plot Nu − 1 against R/Rc − 1 using the
fully two-dimensional QGA, at a number of values including P = 7, E = 2.44 × 10−6.
The slope at low R/Rc − 1 of the P = 7 points is very close to the slope predicted by
(3.16), showing that the P → ∞ theory is reasonable for P = 7.

It is interesting to compare the results (3.16) with large-Prandtl-number non-rotating
convection. For two-dimensional rolls in Bénard convection in the weakly nonlinear
regime a relation of the form (3.16) holds but with K1 = 2 in the stress-free case.
Tilgner & Busse (1997) found K1 ≈ 0.5 at the much larger Ekman number of 2 ×
10−3 in fully three-dimensional spherical simulations. So the rotation is substantially
reducing the convective heat transport in the weakly nonlinear regime. Partly, this
is due to the oscillatory nature of the convection, which means that θ̂ and ûs are
out of phase, whereas in non-rotating convection they are exactly in phase at onset.
It is also partly due to the comparatively thin region, of O(E2/9) (Dormy et al.
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Figure 3. Reduced Nusselt number Nu − 1 as a function of R/Rc for various P and E.

2004), near the tangent cylinder where convection is significant (see figure 2a). If
we suppose the thickness of this layer is L, then in (3.10) the integral will only be
significant over a region of thickness L, so Nu − 1 scales as L|ψ̂ θ̂∗ − ψ̂∗θ̂ |. But from

(3.15), (R −Rc)/R scales directly as |ψ̂ θ̂∗ − ψ̂∗θ̂ |, so K1 must scale linearly with L, and
hence is small at very small E. There is also the possibility of relaxation oscillations
(Grote & Busse 2001; Morin & Dormy 2004), even at large P (Cole 2004), where the
convection occurs in bursts, with long periods of much reduced convective activity.
This may account for the low Nu value at R/Rc − 1 ≈ 0.3. The Nusselt number
increases slightly faster than the (3.16) prediction near R/Rc − 1 ≈ 1, and this may
due to convection now occurring in the whole sphere, rather than just near s = ri .

The slope K1 is also small at low P (in fact considerably smaller than at large P )
but for a different reason. We can see this by looking at the P = 0.025 points in
figure 3, where initially Nu − 1 only climbs slowly as R/Rc − 1 increases (see also
Tilgner & Busse 1997). This is due to the suppression of convection by the inertial
terms (Herrmann & Busse 1997; Plaut & Busse 2002). There is also very strong
time-dependence at low P due to instabilities occurring close to onset (Schnaubelt &
Busse 1992; Plaut & Busse 2002). However, as noted by Plaut & Busse (2002), as
the Rayleigh number increases, the zonal wind changes its form and the convection
restabilizes. The convection is then not so strongly impeded, and the Nusselt number
starts to increase more rapidly, as seen in figure 3.

3.2. The local Péclet number

We can rewrite (3.15) in another form, eliminating the integral using (3.10),∫ ro

ri

{
ψ̂ θ̂a

(
mQRc − mNuRQ+

im2R

s2
(ψ̂ θ̂∗ − ψ̂∗θ̂ )

)
− R(ω − ω0) θ̂ θ̂a

}
s ds = 0. (3.17)

To make further progress we need to obtain a relation between Rθ̂ and ψ̂ . While
these are both nonlinear quantities whose form varies strongly with R, we explore the
consequences of assuming that their ratio remains fixed at its linear value,

Rθ̂ ≈ (Γr + iΓi)ψ̂. (3.18)

The factor R is suggested by (3.4), and Γ varies with s in a way easily computed from
linear theory. One way of viewing this approximation is that the mean temperature
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gradient in the interior is reduced by a factor Rc/R through the action of the mean
temperature anomaly θ̄ in equation (3.5) as the convection becomes more nonlinear,
but apart from this factor the linear relation between θ̂ and ψ̂ is maintained. We now
obtain ∫ ro

ri

ψ̂ θ̂a

[
1 − NuR

Rc

+
2mΓi

RcQs2
|ψ̂ |2 − (ω − ω0)(Γr + iΓi)

mQRc

]
s ds ≈ 0. (3.19)

If all the terms in the square brackets were constant, the imaginary part would imply
that ω = ω0. This is not of course strictly true, as K2 in (3.16) is not exactly zero, but
nevertheless the ω − ω0 term seems to be relatively unimportant and so we obtain

RNu

Rc

− 1 ≈ 2mΓi

RcQs2
|ψ̂ |2 ≈ 2

3
|ψ̂ |2 (3.20)

where the numerical approximation comes from using the local theory of convection at
small E (Busse 1970; Jones et al. 2000), ignoring the radial wavenumbers compared to
the azimuthal wavenumbers, which is valid for very small E in the case of differential
heating (Dormy et al. 2004). This theory gives RcQs2 = 3m4/s4 and Γi = m3/s4 at
the critical value of m, and s = ri gives minimum critical Rc.

Since us = (1/s)∂ψ/∂φ, if we define a length scale �c = 2πri/m where m is the
critical wavenumber at onset, then

|�cus | ≈ 2π|ψ |. (3.21)

�c is then a measure of the azimuthal length scale of the convection near onset,
since convection first onsets near the tangent cylinder. In dimensional units, |�cus | is
us�c/κ = Pe�, and is therefore a local Péclet number, based on the length scale of
the convection, �c. With the definition (3.2), the root-mean-square time-average of
|us | = Ûs = (

√
2m/s)|ψ̂ | and so (3.20) predicts

Pe� = �cÛs ≈ 2π
√

2|ψ̂ | ≈ 2π
√

3p1/2 = 10.9p1/2, where p =
RNu

Rc

− 1. (3.22)

There are various approximations involved in (3.22), and the basic assumption that
the solutions are periodic is far from true as soon as R is a few percent above critical.
It is therefore quite remarkable that the plot of the local Péclet number against p

for Prandtl number 7, figure 4(a), has a slope of almost exactly 0.5 over the whole
range of Rayleigh numbers for which we were able to compute, up to nearly 50 times
critical. Even the prefactor of 10.9 given by (3.22) is close; the best fit from a log-log
regression gave

Pe� = 8.6p1/2. (3.23)

We also include some low-P points in figure 4(a) for comparison. Our theory has
only been developed for large P , so low-P points are not expected to obey (3.22). At
small p, Pe� is much reduced at P = 0.025, consistent with the low-P behaviour in
figure 3, but at larger p even the low-P points are beginning to fall close to (3.23).

The temperature fluctuation can also be predicted using (3.18). Again using (3.2)
and taking the time-average, |θ | = Θ̂c =

√
2|θ̂ |. We obtain using (3.20)

RΘ̂c

Rc�c

=
|Γ ||ψ̂ |m√

2πsRc

≈ γ

2πs ln(1/η)
p1/2 ≈ 0.12p1/2 (3.24)
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Figure 4. Scaling of (a) local Péclet number Pe� = Ûs�c , (b) temperature perturbation

RΘ̂c/Rc�c , as a function of the parameter p = RNu/Rc − 1 for P = 7.0 and various E.
Points are from the QGA calculations, and the dashed curves are given by (3.22) and (3.24).

where we have adopted a value of s close to the tangent cylinder. We have also used
the local theory value of Γr =

√
2m3/s4. In figure 4(b), ln(RΘ̂c/Rc�c) is plotted against

ln p, and the dashed line RΘ̂c/Rc�c = 0.12p1/2 is shown.
To obtain figure 4, and subsequent plots involving averaged quantities, the root-

mean-square average over t and φ is taken, and then the maximum over s is found.
Thus

Ûs = max
ri<s<ro

[
1

2πτ

∫
τ

∫ 2π

0

|us(s, φ, t)|2 dφ dt

]1/2

, (3.25)

and similarly to obtain the other averaged quantities. Note that the temperature
fluctuation Θ̂ used to plot figure 4(b) is the non-axisymmetric part of the temperature
only. Interestingly, although the results at moderate p are in good agreement with the
predictions, at higher R (3.24) is beginning to significantly underpredict the true value
of the temperature fluctuation. This is probably connected with the transition from
whole-sphere convection to a boundary-layer-dominated regime. As we see later, at
large R the temperature fluctuations are largest in the boundary layer, and so our
method of taking the maximum over s may be contributing to the upturn in Θ̂c at
large R.

4. Scaling laws for strongly nonlinear convection
4.1. The inertial scaling

An important issue for rapidly rotating convection at large R is how the various
quantities scale with R, E and P . On the basis of laboratory experiments, Aubert
et al. (2001) proposed an inertial scaling, which was also suggested by Ingersoll &
Pollard (1982). The scaling is based on the idea that the length scale perpendicular
to the rotation axis, �, is shorter than the container length scale. At these large
values of R we assume that there is no distinction between the typical length scale
� in the radial and azimuthal directions, and that � is a dominant length scale for
the convectively driven vortices. We distinguish between the typical velocity of the
non-axisymmetric fluctuating convection Ûc and that of the axisymmetric zonal flow
Û 0

φ , which scale differently. The radial and azimuthal components of the convective
velocity are assumed to be similar for our scaling, and when we compare with the
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QGA results we define Ûc to be the average, as defined in (3.25), of (u2
φ + u2

s )
1/2

where uφ is the non-axisymmetric part only. In the inertial scaling it is assumed that
inertial and Coriolis accelerations are in balance with the buoyancy force for the
non-axisymmetric components, so using (2.17)

ζ ∼ Ûc

�
,

1

P
u · ∇ζ ∼ 2sus

E
(
r2
o − s2

) ∼ R
∂θ

∂φ
, (4.1a–c)

where only the non-axisymmetric parts of ζ and u are involved, leads to

Û 2
c

P �2
∼ Ûc

E
∼ RΘ̂c

�
, (4.2)

where Θ̂c is the typical non-axisymmetric temperature fluctuation. The second
assumption is that the convective heat flux scales as ÛcΘ̂c, recalling that we assume
that the fluctuating us scales with Ûc. Then

Nu − 1 ∼ ÛcΘ̂c. (4.3)

This assumes the correlation between the radial velocity and the temperature
fluctuation does not vary much with R, E or P . In so far as we have been able to test
this numerically, (4.3) does seem reasonable. Then (4.2) and (4.3) give the scalings

Ûc ∼ (EP )1/5R
2/5
Q , (4.4a)

RΘ̂c ∼ (EP )−1/5R
3/5
Q , (4.4b)

� ∼ E3/5P −2/5R
1/5
Q , where RQ = R(Nu − 1). (4.4c)

These formulae can easily be written in terms of RQ/Rc assuming that Rc ∼
[E(1 + P )/P ]−4/3 (Busse 1970). The length scale � is known as the Rhines scale
(Rhines 1975), as it is given by the balance of Coriolis and inertial accelerations. The
inertial scaling is incomplete, as it does not determine the relation between Nu−1 and
R. Either a further independent assumption is needed (see § 4.3 below), or the Nusselt
number can be determined experimentally as a function of R, as in Aubert et al. (2001).

For the zonal flow, we follow Aubert et al. (2001) and assume a balance between
the Reynolds stress and the Ekman pumping,

(u · ∇)uφ =
∂

∂s
usuφ ∼ Û 2

c

�
∼ P

E1/2
ūφ, (4.5)

which gives

Û 0
φ ∼ E3/10P −1/5R

3/5
Q . (4.6)

There are two further assumptions in (4.6). The first is that the Ekman pumping is
more important in damping the zonal flow than the internal friction. This appears to
be true for low Prandtl numbers, but not for high Prandtl numbers, where the volume
dissipation dominates the Ekman pumping (see § 4.2 below). The second assumption
is that the correlation between us and uφ does not change significantly with R, E and
P . This is only true near critical, and we return to this point below.

We test (4.4a) and (4.6) by plotting in figure 5(a), Ûc against RQ(EP )1/2, and in figure

5(b), Û 0
φP 1/2 against RQ(EP )1/2. Note that the quantity RQ(EP )1/2 is independent of

viscosity (as is the scaling for the convective velocities), so the inertial scaling predicts
a convective velocity independent of viscosity, as expected. If the inertial scalings
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Figure 5. Test of the inertial scaling with our QG code, including the Ekman pumping for

various E and P . (a) Ûc plotted against RQ(EP )1/2. (b) Û 0
φP 1/2 plotted against RQ(EP )1/2.

held, all points in figure 5(a) should collapse onto a single line of slope 2/5 and
in figure 5(b) onto a single line of slope 3/5. The dependence on RQ and E fits
reasonably well, but the dependence on P does not fit at all well. This is a serious
problem for the inertial scaling, because the key assumption that the inertial and
Coriolis terms balance is where the Prandtl-number dependence enters the scaling.
There is some evidence in figure 5(a) that at the highest Rayleigh numbers the P = 7
results are creeping back to the (EP )1/5RQ

2/5 line, but at these very high Rayleigh
numbers and only comparatively moderate Ekman numbers, convection is likely to be
three-dimensional and the QGA may break down. It appears that in the regime where
simulations are feasible the viscosity is still important in determining the convective
velocity. In figure 5(b), the inertial scaling does reasonably well at low P , but the
zonal flow at P = 7 is far below the value predicted by the inertal scaling. This is
not so surprising, because the neglected bulk dissipation term is important in the
dynamics of the zonal flow at P = 7.

An alternative viscous scaling is to replace (4.2) by

Ûc

E
∼ RΘ̂c

�
, � ∼

(
E(1 + P )

P

)1/3

, (4.7)

where the length scale � is determined by linear theory, � = �c = 2πri/m. The P -
dependence used here is that found from the annulus model (Busse 1970). At large
P , � becomes P independent, but at small P , � ∼ (E/P )1/3. This leads to

Ûc ∼ E1/3

(
P

1 + P

)1/6

R
1/2
Q , (4.8a)

RΘ̂c ∼ E−1/3

(
P

1 + P

)−1/6

R
1/2
Q , (4.8b)

Û 0
φ ∼ E5/6P −1/3RQ, (4.8c)

using the small-P form in (4.8c) since it will only be valid when Ekman suction
dominates bulk dissipation in (2.19) which only happens at low P . The E-dependence
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Figure 6. Spectrum of the kinetic energy E(k) with the linear critical k marked as dashed
lines. (a) P = 7.0, E = 6.5 × 10−6, R = 25Rc , 40Rc and 100Rc; (b) P = 0.025, E = 9.74 × 10−7,
R = 3.5Rc .

and the RQ-dependence are very similar in both the viscous and inertial scalings.
Indeed, if RQ/Rc is kept constant, the E-dependence is the same for both scalings.
Aubert et al. (2001) considered that a fixed � fitted their experimental data better than
the � prescribed by (4.4c). For Ûc, the data cannot distinguish which gives the better
fit as far as the E and RQ dependence is concerned. The scatter of the P -dependence
is considerably reduced if (4.8a) is used. The RQ dependence from (4.8c) is now too
steep for the data at large R. However, this may be connected with the Reynolds
stress not scaling with Û 2

c /� owing to progressive decorrelation of uφ and us .
In figure 6(a) we show the energy spectrum E(k) = k|uc(k)|2 for P = 7.0, E =

6.5 × 10−6, for three values of the Rayleigh number. E(k) has the dimensions L3T −2,
and its integral over 0 < k < ∞ and the convecting region is the total energy. To
obtain E(k) we set k = m/ri , m being the azimuthal wavenumber, let

us =
1

2

(
M∑

m=1

um
s (s, t) exp(imφ) + c.c.

)
(4.9)

and take the root-mean-square average |um
s (s, t)| over the whole sphere and time.

Doing the same for uφ we set E(k) = k{〈|um
s |2〉s,t + 〈|um

φ |2〉s,t}. Figure 6(b) shows the

equivalent picture for P = 0.025, E = 9.74 × 10−7, R = 3.5Rc. The dashed lines in
figure 6 correspond to the critical value for the onset of convection. We see that
at 25Rc and 50Rc there is a significant peak near kcrit . At the largest value, 100Rc,
the peak has shifted slightly to a lower wavenumber, but there is remarkably little
evidence of an inverse cascade pushing energy to higher wavenumbers. The spectrum
appears to be determined by the balance of driving and dissipation, so the arguments
leading to a k−5/3 spectrum for wavenumbers below the ‘forcing’ wavenumber (see
e.g. Salmon 1998) do not apply. In figure 6(b) the peak has shifted somewhat, but
surprisingly little considering that at P = 0.025, R = 3.5Rc corresponds to a strongly
turbulent regime. The persistence of the linear critical wavenumber, which is Prandtl-
number dependent, even at rather large Rayleigh numbers may account for the failure
of the different Prandtl-number results to collapse onto the inertial scaling line in
figure 5(a).
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Figure 7. Vorticity snapshots with the zonal flow profile added. (a) P = 7.0, E = 6.5 × 10−6,
R = 42.7Rc; (b) P = 0.025, E = 1.95 × 10−6, R = 3.0Rc .

In figure 7(a) we show a snapshot of the vorticity at P = 7.0, E = 6.5 × 10−6,
R = 42.7Rc, and in figure 7(b) the vorticity for P = 0.025, E = 1.95 × 10−6, R = 3Rc.
The highly chaotic nature of the flow is evident, as is the prevalence of the small
length scale � in figure 7(a), and in figure 7(b) the persistence of ‘linear’ behaviour
(compare the linear theory figure 2(b) at the same P ).

4.2. The zonal flow

The zonal flow profile is also shown in figures 7(a) and 7(b). The zonal flow has a
consistently different pattern at large and small P . At P = 7, with the figure 7(a)
parameter values, Ûc ≈ 1723, Û 0

φ ≈ 573, so the zonal flow is only one third of the
convective velocity. At P = 0.025 and the figure 7(b) parameter values, Ûc ≈ 44,
Û 0

φ ≈ 106, so the zonal flow is double the convective velocity. The zonal flow takes up
a much larger fraction of the kinetic energy at low P . At large P , the weak zonal flow
has multiple jets, whereas the stronger zonal flow has a much simpler spatial structure
with strong retrograde flow near the tangent cylinder. Note also that although the
convective velocity Ûc is smaller in figure 7(b) than in figure 7(a) in terms of the
thermal time scale, the Reynolds number Ûc/P is much larger in figure 7(b) than in
figure 7(a), despite the Rayleigh number in figure 7(b) being only three times critical.

In figures 8(a) and 8(b), the various terms involved in zonal flow production are
analysed: the Ekman pumping (labelled EP), the bulk dissipation (labelled BD) and
the Reynolds stress (RS). These are found by averaging the terms in (2.19) over
cylinders of constant s. We see from figure 8 that at high P the bulk dissipation is
mainly balancing the Reynolds stress, with Ekman pumping playing only a minor
role, but at low P the Ekman pumping balances the Reynolds stress, the bulk
dissipation being relatively unimportant. Rather remarkably, although the Ekman
pumping makes only a small global contribution in figure 8(a), it nevertheless makes
a huge difference to the pattern of the zonal flow. If the Ekman pumping is switched
off, the zonal flow is much larger and multiple jets do not occur; similar behaviour
was found in the annulus model (Jones et al. 2003; Rotvig & Jones 2005).

As mentioned above, the scaling (u · ∇)uφ ∼ Û 2
c /� suggested by weakly nonlinear

theory does not fit well with our QGA data at larger R. In the weakly nonlinear
regime, Û 0

φ increases quadratically with Ûc, but at larger Rayleigh numbers Û 0
φ grows

only at a rate Û x
c , with 1 < x < 2. Since the zonal flow is driven by Reynolds force
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Figure 8. Profiles of the different terms in equation (2.19); Ekman pumping (EP), bulk
dissipation (BD), Reynolds stress (RS). These s-profiles are averaged over φ and time.
(a) P = 7.0, E = 2.44 × 10−6, Re = 10Rc; (b) P = 0.025, E = 1.95 × 10−6, Re = 3.0Rc .
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line gives the quadratic weakly nonlinear scaling, and the dot-dash line gives a power 1.3 scaling
which appears to fit the low-P data.

in the QGA, we investigate the dependence of Û 0
φ on Ûc. The viscous scaling (4.8a)

and (4.8c) gives Û 0
φ ∼ E1/6P −2/3Û 2

c at low P , i.e. the weakly nonlinear quadratic

dependence. The inertial scaling (4.4a) and (4.6) gives P −1Û 0
φ ∼ (P −1Ûc)

3/2. Since

P −1Ûc is the convective velocity in terms of ν/d rather than κ/d , it is a Reynolds

number rather than a Péclet number, and we plot in figure 9 P −1Û 0
φ against P −1Ûc.

The low-P results, where the assumption that the Reynolds force balances the Ekman
pumping is valid, lie approximately on a line

P −1Û 0
φ ∼ 0.3(P −1Ûc)

1.3, (4.10a)
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suggesting that at large Re the Reynolds force

us

∂uφ

∂s
∼ usuφ

�
∼ Û x

c , where x ≈ 1.3. (4.10b)

There are a number of possible explanations for this behaviour. Noting that the
exponent 1.3 is less than the 3/2 predicted by inertial theory, Gillet et al. (2006)
suggest that with strong zonal flow and large Re, the radial length scale � in (4.10b)
may be increasing with Re as an inverse cascade eventually begins to develop. With
strong zonal flow, the vorticity may be dominated by the zonal flow contribution
∂Û 0

φ/∂s, so the Rhines balance (4.1b), P −1u · ∇ζ ∼ 2sus/E(r2
o − s2), would lead to

� ∼ (EP −1Û 0
φ )1/2, (4.11a)

so that (4.5) gives

Û 2
c

�
∼ Û 2

c(
EP −1Û 0

φ

)1/2
∼ PE−1/2Û 0

φ, so P −1Û 0
φ ∼ (P −1Ûc)

4/3, (4.11b)

which is not far from the observed relationship. Note that if the Rhines length follows
(4.11a) rather than � ∼ (EP −1Ûc)

1/2, (4.4a) and (4.4c) must be modified to

Ûc ∼ E3/16P 1/4RQ
3/8, � ∼ E5/8P −1/2RQ

1/4. (4.11c, d)

Another possibility is that the reduction in the rate of growth of the Reynolds force
with Re is due to a progressive decorrelation between us and uφ , so that even if �

were constant, and us ∼ uφ ∼ Ûc, the Reynolds force could fall. Some evidence for
this decorrelation is found by comparing figures 2(b) and 7(b).

At large P and R the primary balance in (2.19) is Reynolds stress against bulk
dissipation. The trend in figure 9 for the P = 7 points is not very clear, but since the
zonal flow is weak and from figure 6(a) there is little evidence for � increasing with
Ûc, it is simplest to assume the Reynolds force scales as Û 1.3

c /�c, leading to

P
Û 0

φ

�2
c

∼ Û 1.3
c

�c

. (4.12)

We can now suggest scalings for Û 0
φ at larger R based on these ideas. At low P we

use (4.11b) and (4.11c) and at high P we use (4.12) and (4.8a) to give

Û 0
φ ∼ E1/4RQ

0.5, P � 1; Û 0
φ ∼ E0.77P −1.12RQ

0.65, P � 1. (4.13a, b)

These formulae fit quite well with the data in figure 5(b). There are, however, a
number of issues concerning the range of validity of these formulae. There is some
uncertainty about the size of the convective length scale �. Here we find there is not
so much variation of � with R (see e.g. figure 6a), but the annulus model study of
Jones et al. (2003) suggested that the length scale of the zonal flow increases with
RQ. Also, the correct relationship between the zonal and convective flows depends
on the correlation between us and uφ . If there is progressive decorrelation as the
flow becomes more turbulent, that decorrelation needs to be taken into account in
formulae such as (4.13). Another point is that in (4.13a) we assume the primary
balance is between Ekman suction and Reynolds stress whenever P is small. If the
zonal flow length scale does scale approximately with � at low E, the bulk dissipation
might start to become important at E � 10−6 even at low P .
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Figure 10. (a) Snapshot of the temperature perturbation θ at P = 7.0, E = 6.5 × 10−6,
R = 42.7Rc . (b) Profile of the temperature T̄ at varying R, for P = 7.0 and E = 6.5 × 10−6.

4.3. Heat transport at large R

We noted above that both the inertial scaling and the viscous scaling are
incomplete, because the Nusselt number–Rayleigh number relation is undetermined.
In figure 10(a), a snapshot of the temperature anomaly θ is shown for a strongly
supercritical case at P = 7. Thin plumes emerging from the tangent cylinder are
evident. In figure 10(b) the mean temperature profile T̄ averaged over φ and time is
shown. It is clear that at large R, thin thermal boundary layers are forming, and the
plumes are emerging from these layers. At low P it is hard to get into the large-Nu

regime with our code, and so in this section we address only the large-P case. It
should be noted that the QGA breaks down at s = ro, and so the thermal boundary
layer structure near s = ro may be unreliable. We therefore focus on the tangent
cylinder boundary layer, and assume the Grenoble experiment configuration, where
this is a solid boundary.

A natural extension to the scaling laws is

(u · ∇)θ ∼ us

dT̄

ds
or Θ̂c ∼ �(γ − �T ′) (4.14)

where from (2.26) γ is the temperature drop from ri to ro, and �T ′ = �T ′
i + �T ′

o

is the total temperature drop across both the boundary layer at the tangent cylinder
and the boundary layer near the equator, so γ − �T ′ is the temperature drop across
the convecting region. At moderate R we see from figure 10(b) that �T ′ is small, but
at large R, �T ′ approaches γ .

If we use the inertial scaling (4.2), (4.3) with (4.14) we obtain

Nu − 1 ∼ R3/2P −1/2E2(γ − �T ′)5/2, (4.15a)

while the viscous scaling (4.3), (4.7) and (4.14) gives

Nu − 1 ∼ R

(
1 + P

P

)1/3

E4/3(γ − �T ′)2. (4.15b)

Equation (4.15b) appears to fit the moderate-R data better (see figure 3). It also has
the same R-dependence as the weakly nonlinear theory, and it predicts RQ ∼ R2
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provided �T ′ is small. At large R, �T ′ becomes significant, and Nu starts to increase
more slowly than linearly with R.

We can estimate the growth of the temperature drop �T ′
i near the tangent cylinder

by using a boundary-layer argument, assuming the presence of a solid cylinder at
s = ri . We take the thermal boundary layer to be of thickness δκ and the viscous
boundary layer (thicker at large P ) to have thickness δν . Balancing advection and
diffusion across these layers,

δκ
2 ∼ �

U ∗ , δν
2 ∼ �P

U ∗ (4.16a, b)

where U ∗ is the typical velocity in the plumes, which is not necessarily Ûc. We
are assuming that the spacing between the plumes is �, not unreasonable from
figure 10(a). We now balance buoyancy in the thinner thermal layer against viscous
drag, omitting the Coriolis term. The Ekman layer is thin, ∼ E1/2, but at large
R the thermal boundary layer is thinner provided the plume local Péclet number
U ∗� = Pe∗

� > E−1�2 ∼ E−1/3 which is more or less true at the highest values of R that
we reached. We also note that the conducted flux into the boundary layer scales with
�T ′

i /δκ , so

R�T ′
i δκ ∼ U ∗

δν

, Nu ∼ �T ′
i

δκ

. (4.17a, b)

Then (4.16) and (4.17) can be combined to give

�T ′
i ∼ Nu4/5R−1/5�1/5P −1/10. (4.17a, b)

Since at moderate R, Nu increases linearly with R on the viscous scaling, �T ′
i

grows as R increases. Our numerics indicate that the temperature drop across the
outer boundary �T ′

o also grows as R increases. When �T ′ = �T ′
i + �T ′

o becomes
comparable with γ , this feeds back into (4.15) and slows down the rate of growth
of Nu with R. Figure 3 does indeed show that Nu increases more slowly than
linearly with R at large R. Ultimately, �T ′ will be close to γ and the boundary layer
will entirely control the heat flux, giving Nu ∼ R1/4 if � remains constant, though
of course at very large R, � may not remain constant. Nevertheless, we certainly
expect the boundary-layer regime to lead to a significant drop in the exponent α

of the Nu − 1 ∼ (R/Rc − 1)α relation from the value near unity which it has for
Rc < R < 20Rc. The experiments of Sumita & Olson (2003) gave an exponent of
α = 0.41 at the highest R they could achieve, suggesting that they were in a regime
where the heat transport is controlled by boundary layers, possibly near the tangent
cylinder, and that they were not in the moderate-R regime where α is close to unity.
Their experiment does not have a fixed tangent cylinder, but allows flow through the
tangent cylinder, so the transition layer near the tangent cylinder may have a complex
structure.

5. Conclusions
The QGA is a useful model for obtaining insight into the nature of nonlinear

rapidly rotating convection outside the tangent cylinder. The picture which has
emerged from our numerical solutions of the QGA seems to be generally consistent
with the known experimental and theoretical results. The QGA does have some weak
points though. There is some uncertainty over how to reduce the temperature equation
to two-dimensional form. In our treatment, the QGA imposes a particular latitudinal
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distribution of heat flux. An associated problem is that there is no thermal wind in the
QGA, that is no zonal flow driven by temperature gradients perpendicular to gravity.
In our geometry, with g in the s-direction, this would require z-variation of T , which
is neglected here. Several nonlinear rotating convection experiments have detected
the presence of zonal winds. Thermal wind is sometimes suspected, as in the liquid
sodium experiment of Shew & Lathrop (2005). However, Aubert et al. (2001) showed
by direct measurements in their liquid gallium experiment that the thermal wind
generated was an order of magnitude less than the observed zonal flow. Possibly the
presence of convection inside the tangent cylinder may lead to an enhanced thermal
wind. At large P , and possibly also in the presence of magnetic fields with significant
Lorentz force, the thermal and magnetic winds may exceed the zonal flow driven by
Reynolds stresses.

Weakly nonlinear theory has been shown to be a surprisingly good model for
moderate R and large P . Using weakly nonlinear ideas, we have isolated the
local Péclet number as a quantity whose R and E dependence follows the weakly
nonlinear prediction Pe� ∼ (RNu/Rc − 1)1/2 far beyond the mildly supercritical
regime. Remarkably, at large values of RQ, even the low-Prandtl-number results
follow this law with a very similar pre-factor to the large-P value.

A number of experiments have found agreement with the inertial scaling of Aubert
et al. (2001), and the view that at large Rayleigh number results are independent of
diffusion was supported by the three-dimensional simulations of Christensen (2002).
Our results raise some doubts about the inertial scaling because the Prandtl-number
variation does not agree well with our results. Instead, we find that the length scale
determined at onset by linear theory still plays an important role even at R ≈ 40Rc,
P = 7. It seems that this length scale remains close to the dominant length scale
for driving the convection even for strongly supercritical flow. Rather surprisingly,
the viscous scaling based on keeping � at its linear critical value seems to do a
better job of representing our nonlinear results than the inertial scaling as far as
the convective velocity is concerned. It is important to remember that the predicted
variation of � with R in the inertial scaling is a very weak 1/5 power, so that there is
not much difference between the inertial and viscous scalings regarding the R and E

dependence. It is in the Prandtl-number dependence that the effects of diffusion show
up most strongly, as noted by Christensen (2002).

We find, as have others before (e.g. Or & Busse 1987; Tilgner & Busse 1997), that
the zonal flow produced by the Reynolds stresses (the thermal wind contribution
being outside the scope of the QGA) is stronger and more consistent at low P than
at high P . At low P with our no-slip boundary conditions, we find that the dominant
balance determining the zonal flow is between the Reynolds stress and the Ekman
pumping at the boundary, whereas at high P it is between Reynolds stress and bulk
internal dissipation. We find that at large R the zonal flow grows more slowly than
the rate Û 0

φ ∼ Û 2
c expected from weakly nonlinear theory if the correlation between

uφ and us remains at its linear value. We find instead a good fit to the law Û 0
φ ∼ Û 1.3

c ,
particularly at low P where the zonal flow is larger and time averages are well-
defined. This may be due either to a growth in the radial length scale, as predicted
by the inertial scaling with Rhines length given by the zonal flow, or to a progressive
decorrelation between uφ and us .

The convective heat transport Nu − 1 increases approximately linearly with R for
moderate R � 10Rc at large P , so that the exponent α in the relation Nu − 1 ∼
(R/Rc −1)α is approximately unity. However, α starts to fall as R is increased further,
and in our model this is due to the appearance of thermal boundary layers in which
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the Coriolis force is no longer dominant. At large R and small but fixed E we
therefore expect the R-dependence of the convective heat transport to become similar
to that of boundary-layer-controlled non-rotating convection.

We have not considered here the flow inside the tangent cylinder, or the structure of
the layers near the tangent cylinder, which are important features of the full problem.
It may be possible to develop a modified form of the QGA to explore convection
in these regions, as convection there will still take the form of tall thin columns.
However, the weak z-dependence of the z-vorticity, so evident in figure 1(a), is lost;
the z-profile of the z-vorticity inside the tangent cylinder has an internal zero, and
the z-component of the temperature gradient will also be important there.

We thank Emmanuel Dormy, Dominique Jault, Daniel Brito, Philippe Cardin,
Henri-Claude Nataf, Andrew Soward and Keke Zhang for discussion and helpful
comments. N.G. is grateful to CNRS and Université Joseph Fourier (Grenoble)
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